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Abstract—Time-triggered (TT) communication has long been
studied in various industrial domains. The most challenging task
of TT communication is to find a feasible schedule table. Network
changes are inevitable due to the topology dynamics, varying data
transmission requirements, etc. Once changes occur, the schedule
table needs to be re-calculated in a timely manner. Solver-based
methods and heuristic-based methods were proposed to solve
this problem. However, solver-based methods employ integer
linear programming (ILP) or satisfiability modulo theories (SMT)
which have high computational complexity. On the other hand,
heuristic-based methods are fast, but they need to be handcrafted
based on the application characteristics. Thus, these methods are
not general enough to work in complex scenarios especially in
large networks.

In this paper we propose DRLS - Deep Reinforcement
Learning based TT Scheduling method. DRLS first trains an
application or network specific scheduling agent offline. Then,
the agent can be used for online scheduling of TT flows.
However, off-the-shelf reinforcement learning techniques cannot
handle the TT scheduling problem with typical complexity and
scale. DRLS provides novel solutions to this challenge, including
three key innovations: new representations for TT network
adapted to various topologies, proper deep neural network (DNN)
structures to capture network characteristics, and scalable rein-
forcement learning (RL) models to handle online TT scheduling.
Comprehensive experiments have been conducted to compare
the performance of DRLS and other methods (heuristics-based
methods such as HLS, LS, HLD+LD, LS+LD, and ILP-based
method). The results show that DRLS can not only adapt to
specific network topologies, but also have better performance:
runs much faster than ILP solver-based methods, and schedules
about 23.9% more flows than traditional handcrafted heuristic-
based methods.

Index Terms—time-triggered Ethernet, TTEthernet scheduling,
deep reinforcement learning

I. INTRODUCTION

Time-triggered (TT) communication with the end-to-end
real-time guarantees has long been studied in the domain
of aerospace, industrial control, and automotive electronics
[1]. TTEthernet [2] is a deterministic, synchronized, and
congestion-free network protocol based on the traditional Eth-
ernet standard. TTEthernet integrates three types of traffic: TT
messages, Rate Constrained (RC) messages, and Best-Effort
(BE) messages. Traffics in different types offer different QoS
(e.g., delay and jitter upper bounds). Usually, TT messages
have the highest QoS guarantee and are used to deliver critical
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control data. TT messages are transmitted according to a pre-
calculated schedule table that contains the route information,
sending and receiving point-in-times of each TT flow. The
schedule table is well designed such that collisions between
TT messages and other RC and BE messages are avoided.
Finding a suitable schedule table is an important task for TT
communication, and this problem has been proved to be NP-
complete [3].

The configuration of a TT network is not always static:
the network topology may change due to node/link failure
[4]; the data transmission requirements may change due to
the change of upper applications. Once change happens, we
need to renew the TT schedule table accordingly. One possible
solution to this situation is that we pre-compute a TT schedule
table for each possible network configuration, and switch to
the corresponding TT schedule table when change happens. If
the number of possible configurations is very large, then this
solution is infeasible. Hence, we need to compute the schedule
table on-the-fly in a timely manner which we call the dynamic
TT scheduling problem.

The methods for synthesis of TT schedule table can be
mainly divided into two categories: solver-based methods and
heuristic-based methods. Solver-based methods model the net-
work topology, transmission requirements, application specific
constraints, application transmission requirements, etc., as a
set of constraints (or formulas). Then these constraints are
fed into a SMT tool [5] [6] or an ILP tool [7] to get a
feasible solution which is then translated into a TT schedule
table. Since the problem is an NP problem [3], solver-based
methods often have high computational complexity that makes
them hard to compute a solution in a short time. On the other
hand, heuristic-based methods are faster. But the heuristics are
usually handcrafted and need to be designed with good domain
knowledge and expertise. Since heuristics are constructed
under certain assumptions (for example, tabu search-based
methods [8]), they are not generalized enough to have good
performance for different configurations. Furthermore, some
heuristics (for example, list-base methods [9]) do not scale up
well for large networks. Therefore, designing an efficient and
high-quality scheduling heuristic is a critical and promising
way to solve the dynamic TT scheduling problem.

The TT scheduling problem is essentially a combinational



optimization problem. At present, deep reinforcement learning
(DRL) has been used to solve scheduling problems [10]
[11] [12]. These works use DRL to train a high-quality
domain-specific agent and then the agent is used to solve the
corresponding scheduling problem. In this paper, we present
the DRL-based TTEthernet Scheduler (DRLS), which includes
two phases: (1) an offline training phase: agents are trained
using specific network topologies or random topologies; (2) an
online inference phase: the trained agent is used to compute
a TT schedule table for the specific network topology and the
flow requirements incrementally.

The design of DRLS faces three challenges: (1) how to
encode the time-triggered network status since status repre-
sentation is a key ingredient to DRL? (2) how to design the
deep neural network (DNN) structure of the agent? (3) how to
enable incremental (or dynamic) scheduling, since the trained
agent is used to schedule TT flows one by one?

The frame of a TT flow is transmitted from the source
node to the destination node hop by hop. At each hop, the
agent trained by DRLS takes the system state as input and
generates an action, which tells the TT frame when and to
which neighbor node it should route. DRLS uses directed
graphs to represent the network topology and the information
of network resources. Two kinds of features are attached to the
edges of the graph and are extracted to express the state of the
network. The first one is static features which are calculated
only once at the beginning of scheduling. The static features
contain a reachable matrix which represents the distance of
each pair of edges (which is used for frame routing), hyper-
period (which is the least common multiple of the periods
of all flows), etc.; the other one is dynamic features which is
updated every time the frame arrives at a new node. The static
features consist of the location of the frame, the allocation of
network resources, the remaining transmission time, etc..

The above raw state features are delivered to an embedding
neural network to convert them to a uniform format and extract
useful information to construct an embedded state feature.
Then a policy neural network uses the embedded state feature
to calculate the possibilities for each action. Not all actions can
be converted to a valid schedule so we propose the concept of
control gate to filter invalid actions. The one with the highest
probability of the remaining actions is selected as the output.
The scheduling of a TT flow stops when the frame arrives at
the destination node and the schedule are constructed by the
actions sequence generated by the agent. In order to reduce
the action space and improve the speed of DRLS, we divide
the hyper-period into equally sized time slots. The size of the
time slots is long enough for the transmission of the longest
frame on any link.

The contributions of the paper are as follows:

1) To the best of our knowledge, we are the first to use
DRL to solve the dynamic TT scheduling problem. We
propose a DRL-based modeling, training and application
method specific to TT flow scheduling.

2) We propose several optimization methods to enhance
the feasibility and scheduling ability of DRLS. We use

multiple simple actions instead of one complex action to
construct a route, which enables DRLS to dynamically
schedule TT flows and adapt quickly when the network
topology changes. The control gate mechanism is pro-
posed to alleviate the uncertainty of DNN and improve
the feasibility of the scheduler.

3) Comprehensive experiments of both industrial and arti-
ficial scenarios are conducted to evaluate DRLS. Com-
pared with ILP solver-based methods, the running time
is decreased and the average scheduling time per flow
is less than 30 milliseconds. DRLS can schedule 23.9%
more TT flows than heuristic-based methods on average.
DRLS is also verified by simulation using the network
simulator OMNeT++.

We start by introducing related work in section II. The
system model and overview are discussed in section III and
IV, respectively. Section V shows the design of DRLS. We
illustrate the evaluate and simulation in section VI and VIIL.
And finally, we draw the conclusion with some discussion in
section VIIL

II. RELATED WORK

At present, there are a variety of methods related to TT
flow scheduling. Generally speaking, scheduling methods can
be divided into solver-based and heuristic-based methods.
Moreover, solver-based methods can be divided into static and
dynamic methods.

Solver-based solution constructs the objective function ac-
cording to system constraints related to the period and end-
to-end delay. Steiner W [5] et al. proposed a static scheduling
method based on SMT solver, which leverages a time-triggered
communication paradigm to schedule the time window of
TT flows offline. There are many other methods based on
SMT solvers such as [6] [13] [14]. Generally speaking, these
methods solve the scheduling scheme by setting constraints
and optimization goals. They can achieve a locally optimal so-
lution by solving the objective function. These static methods
usually calculate the TT schedule offline and then distribute the
schedule table to each switch or host. Obviously, they cannot
adapt to changes in the network topology, and they cannot
schedule newly come TT flows either.

Traditional heuristic methods use lots of heuristic rules base
on professional experiences to schedule TT flows. On the
premise of meeting the deadline of both TT flows and RC
flows, Tabu search-based approach [8] can generate an offline
schedule of TT flows while minimizing the end-to-end delay
of the RC flows. To take Audio-Video-Bridging traffic into
account, [15] constructed an initial solution in a greedy manner
and iteratively search for a better solution using a modified
List Scheduling heuristic. Based on period allocation, Ripoll
[16] proposed a schedule generation algorithm that reduced
the size of the hyper-period and the size of the schedule table,
thus reduced the storage resource requirements for embedded
devices. Nasri M [17] [18] proposed a method based on the
reconciliation period, which reduces the demand for resources
equipment while scheduling TT flows.



Dynamic methods can schedule changing TT flows. [19]
proposes a method that exploits the global view of the control
plane in SDN to incrementally schedule flows. This method
has a relatively low run time because it schedules TT flows
on the host devices (terminal devices). Based on a genetic
algorithm wrapper feature selection approach, [20] ensembles
multiple classifiers and proposes a scheduling method based on
machine learning for real-time scheduling scenarios. Although
these dynamic scheduling solutions can schedule TT flows
incrementally, they make use of some features of specific
domain scenarios (such as the control plane of SDN), which is
very difficult to get from other TT flow scheduling scenarios.
Wang N [7] proposes a dynamic scheduling method based
on ILP solver, which can generate an adaptive schedule for
the system quickly, but can only be used in the train control
network.

As mentioned before, run time is a critical criterion of a
scheduler especially in scenarios where TT flows change fre-
quently. Some offline equivalence strategies [21] [22] calculate
and store the offline schedule table and then update online
which significantly reduces the storage space and scheduling
calculation time. However, it is only applicable to scenarios
where the initial information is known and contains only a few
updates. Nasri [23] proposed a predictable linear-time online
preemptive scheduling algorithm, which can solve the problem
of sampling delay. However, such algorithms cannot schedule
in complex networks with a large number of TT flows.

DRL is a hot technology which has been widely used in
network scheduling. In 1994, Boyan J A [24] et al. began to
use the Q-Learning method for network scheduling . In recent
years, [11] uses graph embedding to extract the feature of
nodes in the graph and exploit Q-Learning to train neural net-
works. [10] uses a graph neural network (GNN) and a policy
network to schedule data processing jobs on the distributed
computing clusters. [25] tries to use DRL algorithms to solve
cellular network traffic scheduling problems. [26] use DRL
to solve TDMA link scheduling problem in wireless sensor
network considering the energy of devices. It can be seen that
many scholars have tried to use neural networks to cope with
scheduling problems in recent years. However, to the best of
our knowledge, no one has yet proposed a solution using DRL
to solve TT flow scheduling problems.

In summary, we can see that the solver-based static method
takes a long time to schedule and cannot adapt to changes
in the network topology. Traditional heuristic-based dynamic
methods have low run time but require the professional knowl-
edge of TT scheduling and are not universal. Therefore, we
choose to use DRL technology to solve the TT flow scheduling
problem.

III. SYSTEM MODEL AND PROBLEM DEFINITION

The network topology is modeled as a directed graph
G = (V,E), where V is the set of nodes representing
the switches in the network. E is the set of directed edges
connecting two nodes. If there exists a physical link between
U, and v, then (v, vy), (U, vm) € E, where the first node

in the pair description defines the source node and the second
node defines the destination node.

A TT flow is a periodic unicast message from the
source node to the destination node. We denote the set
of flows in the network as S. A TT flow s, € S is
defined as a tuple (srcg,dsty,leng,prdy,delayy), where
srcg, dstg, leng, prdy, delayy are the source node, the
destination node, the size in bytes of the message transmitted,
the sending period and maximum allowed end-to-end delay
of the flow s, respectively. Since flows may have different
periods, we consider an overall schedule cycle (hyper-period)
which is larger than (or equal to) any individual flow period
prdi € P. We denote the hyper-period of all flows as prd,
which is the least common multiple of the periods of all TT
flows.

Similar to [27], the [-th instance of a flow s € S routed
through e; € E is defined by the frames f,:fl € F7', where
F,f’ C F¢ is the set of all frames of flow s, that are
to be scheduled on edge e;. To schedule a TT flow we
need to determine when f;’, travel through e;. To reduce the
complexity of scheduling, one of the most used techniques is
the division of the hyper-period into equally sized time slots
[28]. We divide 1 millisecond into « time slots donating by
T, each of which can transmit the longest instance of Ethernet
frame (i.e., an MTU frame). There are prd; X a time slots in
one hyper-period. f,jfl choose one of the time slots to travel
through e;. We denote the status of j-th time slot ¢; of ¢; in
the hyper-period as in € Q.,, where Q., C @ is the status
of all time slots of e;. Q? € (., is an integer representing
the number of flows which travel through e; using the time
slots ;. A time slot can only be occupied by one frame so we
have the constraint:

Ve, € B t; € T,QF € {0,1} (1)

We denote the schedule of a TT flow from source node src;,
to destination node dst as {(eg,to), (e1,t1), ", (en,tn)}
where e starts from srcy and e, ends at dsty. e; and e;41
are adjacent edges. The sorts e;.src and e;.dst are used for
the source node and destination node of the edge e;. We have
the constraint:

€0.STC = STC}Z
ey,.dst = dsty, 2)
Vie {0,1,2,--- ,n—1},e;.dst = e;q1.87¢C

The end-to-end delay should not exceed the maximum end-
to-end delay delayy.

tn —to < delayy 3)

As a flow sy, transmits prd;/prdy, frames in a hyper-period
prds, it possesses prds/prdy time slots in prd;.

Similar to [29], the period of TT flows are set to powers of
2, that is to say:

Vprdy, € P,prd, € {4,8,16,32,64,128,256,512, 1024, 2048}
“4)



The problem of TT scheduling can be formulated as: given
the network topology and TT flow requirements, finding valid
schedules (routes and corresponding time slots) for all TT
flows satisfying all constraints above. We define this model
based on assumptions that all network nodes (switches) have
distributed synchronization capabilities and real-time storage
and forwarding capabilities.

IV. OVERVIEW OF DRLS

Reinforcement learning (RL) is a general framework which
learns to make decisions according to the observation of
previous transition data. Typically, an RL consists of four
parts, the state space ST, the action space A, the reward R,
and policy m. At each timestamp, according to the current
state st, the RL agent selects the action a according to m
and then a reward r € R is given by the Environment. This
process is usually modeled as Markov Decision Process. Deep
reinforcement learning is an RL using DNN to implement the
policy 7w which can cope with more complex problems than
traditional RL.

As shown in Figure 1, Agent of DRLS is the decision maker
deciding what action to take, and Environment modifies the
status of the network after a decision is made and gives the
rewards to the decision. When the scheduling starts, a state
st € ST is observed containing the information of the network
configuration and TT flows. As mentioned above, the schedule
of a flow consists of two parts, route and sending time. Then
Agent makes a route decision using the DNN and a time
slot assignment decision using Low Degree (LD) method and
these two decisions constitute the action a. Environment
calculates the reward r for Agent regarding to the scheduling
target and modifies the network status by performing the
action a. This reward is related to the scheduling delay
and the completion status of scheduling. The reward is used
to continuously improve the performance of the DNN. All
processes above are specifically illustrated in section V.
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Fig. 1. The structure of DRLS.

We use two neural networks (i.e., embedding neural network
and policy neural network) to implement the policy m of

DRLS. The embedding network extracts the global topology
information of GG and the embedding vector of each edge. The
policy network is used to determine the next action. The DNN
is specifically discussed in section V-D

There are three major challenges in the training and infer-
ence of DRLS:

1) Network Status Representation The modeling of rein-
forcement learning needs to fully describe the status of
the network and the status of each TT flow scheduled in
the network. At the same time, the modeling needs to
consider changes of network topology due to network
failure. It is a challenge to represent the dynamically
changing network resources and topology. This chal-
lenge is discussed in section V-A

2) Dynamic Scheduling A scheduler cannot know all the
TT flows in advance in dynamic scheduling scenarios.
The scalability of a scheduler is essential when the net-
work topology becomes large. Many ILP solver-based
methods and heuristic methods have poor performance
when scheduling for a network with a large number of
nodes. How to schedule TT flows dynamically in a large
network is a big challenge which is discussed in section
V-B

3) DNN Modeling and Training DNN is an important
part of DRLS which computes route for a flow sy.
How to construct a DNN that is capable of making the
appropriate route decision and can finish running in a
reasonable time is a challenging problem. The DNN
in DRLS is specifically discussed in section V-D and
section V-E.

V. DETAILED DESIGN OF DRLS

In this section, we first specifically describe the compo-
nents of DRLS mentioned in Section IV then introduce a
novel time slot assignment method, the LD method. The
solution to the three major challenges is also illustrated
in this section. The source of DRLS is available online
https://github.com/MengMeng96/DRLS.

A. State Modeling

A system state st represents all the information the Agent
needs to generate an action a. We implement st using a
vector of real numbers which representing the information
of each edge (physical link) in the network. st consists of 6
parts: 1) The distance between this edge and destination node
dsty. A distance of 0 means that the message has reached
the destination node dsty. Generally, the closer the better. 2)
Whether this edge is adjacent to the edge of the last action
or this edge starts with srcy. The message of the TT flow is
currently stored in the destination node of the edge of the last
action. Therefore, the next edge needs to be adjacent to the last
edge. 3) Whether this edge composes a loop with the edges of
the actions before. The schedule of the TT flow should avoid
network link loops which waste network resources and leads
to a longer delay. We record the nodes been visited and an
edge composes a loop if its destination node has been visited.



4) The degree of congestion of this edge, which is expressed as
the ratio of the number of free time slots to the total number of
time slots. Generally, choose an uncrowded edge can maintain
load balancing and avoid bottleneck links 5) This edge has at
least one available time slot or not. An edge is invalid if it has
no available time slot for the current TT flow. 6)The lowest
degree (related to LD method in section V-C) of the time slots
of this edge.

Besides st, we also calculate a reachable matrix M which
is of size |F| x |E| x D where |E| means the number of
edges and D is the longest distance between any two edges in
the network topology. The distance of two edges is defined as
the number of nodes in the shortest route between these two
edges. We use M, ; 4 represent the (i, j, d)-th value in M and
we have:

1,if e;.dst = ej.src
Miji =19 . (5)
0,if e;.dst # ej.src
Vd e {2,3,---,D},
k=|E|
Lif Z M g1 X Mg ja—1 >0
k=1 (6)
k=|E|
0,if Z M1 x My ja-1 =0
k=1

M; j.a =

M; j.a = 1 means there is a route between e; and e; which
contains d nodes. st is recalculated every time before making
an action decision a while M is only calculated once. st
represents the information of each edge and M is related to
the network topology.

B. Action Modeling

When using DRL to solve scheduling problems, the action
space is huge due to large numbers of choices of routes and
sending point-in-time of frames on network nodes [30]. DRLS
reduces the size of the action space by dividing the route
of a TT flow into a set of adjacent edges. Each action only
determines one of the edges instead of the whole route. That is
to say, the schedule {(eo, o), (e1,t1), -+, (en,tn)} of a TT
flow is derived from a sequence of actions. In other words,
each (e;,t;) is related to an action. This kind of scheduling
paradigm gives DRLS good scalability and solves the dynamic
scheduling problem. An action is defined as a pair (e;, ¢;) that
represents the edge e; (the flow need to forward to) and the
time slot ¢; (assigned to the flow). The edge e; is chosen by
a DNN which is illustrated in section V-D. The time slot is
chosen by the LD time slot assignment method in the next
subsection.

C. Low Degree Time Slot Assignment Method

Choosing an appropriate time slot ¢; will enable edge e;
to carry more TT flows. TT flows with a small period would
occupy more time slots than those with large periods and all
of these time slots must be available. A time slot ¢; is called
low degree time slot if it can only carry a TT flow with a large

period because a subset of needed time slots has been occupied
by other TT flows. We use G(e;, t;, prdy) to represent if the
time slot ¢; of edge e; can carry a flow which has a period
prdy, then we have:

prds
prdy, 1

Gleityprdy) = [ (1- EAS (7
1=0

Remember prdy, is the period of flow s; and prd is the
hyper-period of all flows. We then define the degree p(e;, ;)
of a time slot as:

pleit)) = Y

prdx€P

0,if G(ei,tj,prd;) =0 ®)

{prds/prdk,if G(e;, t;,prdy) =1

High degree time slots can carry TT flows with large or
small periods but low degree time slots can only carry those
with large periods. LD method prefers to choose a valid time
slot t; with a low degree p(e;,t;) which can enable the
network to carry more TT flows. As shown in Figure 2, for a
network in which each edge has 16 time slots numbered from
0 to 15. Time slots to, t5, tg, t12, t14 are unavailable. Time
slot t3 can carry a TT flow whose period is 4 as all the time
slots it needs, ts, t7, t11, t15, are available. Time slot ¢o cannot
carry it because time slot 1o is unavailable. If we use time
slot t3 to carry a TT flow with period 8, then there will be no
valid time slot for TT flows with period 4 in the future. As a
result, the LD time slot assignment method prefers to select
time slot ¢y to carry a TT flow with period 8 rather than time
slot 3.

Time slot:10
Period:16

Time slot:0
Period:8

Time
slot
status

Time slot:3
Period:4

Fig. 2. Example of the LD time slot assignment.

Meanwhile, the scheduler needs to minimize the end-to-
end delay of a TT flow s;. Choosing an early time slot can
reduce the delay so the LD method chooses the earliest one
(the closest one to the previews action) among the valid and
low degree time slots.

D. Deep Neural Network Representation

The DNN uses the information of all the edges as input
and outputs the possibility of selecting each edge. The edge
e; of the action (e;,t;) is derived from the outcome of the
DNN. The DNN, which is learnt from [10], has two parts,
the embedding neural network, and the policy neural network.



The embedding network builds an embedding V;, using edge
information st and global information M.

VY = st

9
D — 1}, VA = Wo(ViE 4+ Vi x My) ®

vd e {1,2,---
W is the embedding network which consists of 4 fully con-
nected layers of size 8, 8, 16 and 8. My is a |F| x | E/| matrix
representing the reachable information of length d. The policy
network x consists of 4 fully connected layer of size 8, 32,
16 and 8. x takes VbD as input and outputs the possibility V},
of selecting each edge (e.g. in [0, 1]).

Vo = x0(V,”) (10)

The edge with the highest possibility is chosen. With the
reward R (described in the next subsection) of selecting the
action and the parameters 6 of the DNN, the loss function of
the neural network is defined as:

(1)

The following formula is used to update the parameters 6 of
W and y. A represents the update step size and Vg Loss is the
gradient of the loss function.

Lossg = —logxe X R

0 =60+ X\ xVyLoss (12)

E. Environment Modeling

A rewards R is calculated by the Environment of DRLS
when an action decision a is made. Reward R is used to train
the DNN of DRLS to update its parameters 6. Hy is used to
represent if the flow sy is successfully scheduled. Successfully
scheduling a flow means finding a route from src to dsty,
and the corresponding time slots whose end-to-end delay is
less than the maximum end-to-end delay delayy,.

Hy = b
Sl Y

We define the link utilization rate (link usage) as the number
of time slots occupied by TT flows divided by the number of
all time slots. Remember Q& € {0, 1} represents whether the
time slot ¢; is occupied. The link usage of all links (global
usage) Uy and the link usage U, of an individual edge e; is:

t.
 Xa.ce2qlicq,, 9

if sk is successfully scheduled (13)
if sy isn't successfully scheduled

o (14)
ZQciCQ ZQZ’;EQW 1
tj
ZQZ{eQei Qe
o S "
Q €qQ.,

It’s worth noting that individual usage and global usage are
changing over time and U, and U,, are the usage when a flow
is successfully scheduled. The link usage reflects the degree
of congestion of the link. If the usage of an edge Uk, is larger
than the global usage U, then e; is likely to be a bottleneck
link. If the schedule of sy, is {(eo,t0), (e1,t1),  + , (énstn)}s

with «a, 8, representing the weight of each part, the rewards
r € R of all actions are defined as:

Tn = aHk + 6(Us - Uen) + ’Yp(enatn) (16)

Vie{l, - n—1}ri=rnx - (17)
n

We cannot tell if a flow is successfully scheduled (H},) until
the last action is chosen. As a result, only the reward of the last
action r,, can be calculated using Equation 16 and the rewards
of other actions are the decayed value of r,,. Intuitively, earlier
action has less influence on the final result.

FE. Optimization Methods

Besides the above methods, three important techniques are
used in DRLS:

1) Double Channel Experience Replay: When training
DRLS, TT flows are randomly generated and DRLS computes
schedules for these TT flows one by one. When the scheduling
for a flow completes (successfully or incorrectly), rewards are
given for all actions taken during the scheduling process. We
use Ezperience to represent the action and its reward and we
call an Experience is a positive one if the flow s;, it belongs
to is successfully scheduled. As shown in Figure 1, positive
and negative experiences are saved in the positive experience
pool and negative experience poll, respectively [31] [32] [33].
When the current network scheduling stops, 800 (at most)
positive experiences and 200 (at most) negative experiences
are randomly selected from the experience pool to train the
DNN.

2) Control Gate: DNN would not always generate feasi-
ble actions (i.e., actions that can be translated into a valid
scheduling table). Hence, in order to generate feasible action
decisions, the control gate is proposed to omit edges which
is obviously invalid. There are three kinds of edges that are
treated as invalid. 1) Non-adjacent edges. As mentioned above,
the chosen edge should next to the last edge. 2) Edges that
compose an edge loop. A loop wastes the network resource and
leads to a large delay. 3) Edges that don’t have any available
time slot for the current TT flow.

The DNN outputs the possibility of selecting each edge.
Then the control gate marks invalid edges. Finally, the agent
chooses an edge from valid edges which has the highest
possibility. By using the control gate technology, the error
caused by the lack of training can be compensated, and the
agent is more likely to make valid actions.

3) Failure Recovery: Network nodes (switches) and links
may fail, resulting in changes in network topology and network
resources that affect subsequent TT flows running in this
network. The failed links or nodes should never be used to
carry TT flow anymore and the affected flows need to be
rescheduled.

Failure recovery is done in four steps. First, infor-
mation about the affected TT flows are collected, i.e.
(sreg, dsty, leng, prdy, delayy). Then the network resources
occupied by the affected flows, such as the time slots of an
edge, are released. Third, recalculate the global information



M as the distance between the edges also changes when the
network topology changes. The fourth step is to reschedule
the affected TT flows using the new global information M.

VI. EVALUATION

In this section, we first describe the evaluations settings and
baseline methods in section VI-A and VI-B. DRLS is fully
evaluated in a variety of scenarios using different types of
tests in order to answer the following questions:
1) Compared to other handcrafted heuristics, whether
DRLS has better performance in various topologies with
a large number of TT flows? (Section VI-C)

2) In link failure scenario, can DRLS schedule more TT
flows than other heuristics? (Section VI-D)

3) Does DRLS continuously schedule TT flows at higher
link usage than other heuristics? (Section VI-E)

4) As a heuristic method, does DRLS run reasonably
faster? (Section VI-F)

A. Evaluation Settings

All experiments were run on an Intel(R) Core(TM) 17-8700
64bit CPU @ 3.20GHz with 16 GB of RAM. It is worth noting
that the GPU is not used in the evaluation process.

We evaluate the performance of DRLS on 3 kinds of
network topologies: simplified AFDX (Avionics Full-Duplex
switched Ethernet) network used on the Airbus A380, ladder
network topology used on train communication network, and
randomly generated network topologies.

1) Simplified AFDX Topology AFDX is a typical real-

time avionics network used on the Airbus A380 [34].
We use a simplified version as shown in Figure 3. The
nodes in figure represent switches and lines represent
full-duplex links.

Fig. 3. Simplified AFDX network used in the Airbus A380

2) Ladder Topology Ladder topology is a typical topology
introduced in IEC 61375-3-4 (Ethernet Consist Network)
which is an international standard of train communica-
tion network. Figure 4 shows a ladder topology of size
8, in which nodes denote switches and lines denote full-
duplex links. The size of the ladder topology can vary
such that a small ladder topology could have only 6
switches while a large ladder topology could have 10
switches.

3) Random Topology We use an algorithm to generate
random topologies. The number of nodes of each topol-
ogy is randomly selected between (5, 15) with uniform
distribution. The possibility of edge connecting any two
nodes v,, and v, is 0.35. In other words, for any two

4 6, &) 8

Fig. 4. Ladder network topology

nodes v, and v,, a random number between (0, 1) is
generated. If the value is larger than 0.35, then an edge
connecting v,, and v,, is added.

Besides the network topology, TT steams are the other in-
put of the scheduler. The flows used in the training phase
and evaluation phase are different and both randomly gen-
erated. As mentioned before, a TT flow s; is defined by
a tuple (srcy,dsty,leny,prdy,delayy). For each random
flow, the source node src; and the destination node dsty,
are randomly selected from all nodes in the network. The
frame length len; is an integer randomly selected from
(64,1518). The period prdj, (in millisecond) is selected from
set {4, 8,16, 32,64, 128,256,512, 1024, 2048}. The maximum
delay delayy, is randomly selected between 4 and 256 millisec-
onds. For convenience, we choose a uniform communication
speed for all physical links of 1Gbit/s and we divide a mil-
lisecond into 4 time slots which means a frame of maximum
size can be transmitted in one time slot.

We trained three agents, one for simplified AFDX topology,
one for ladder topologies with different sizes, and one for
random topologies. Each agent is trained with the related
topology and randomly generated flows which are mentioned
above for 20 hours. These agents are evaluated using the same
topology as the training phrase but with different flows.

B. Baseline Methods Compared

To evaluate the effectiveness of our model, we compare our
model with the following baseline methods. All the methods
are well-tuned and we report their best performance.

1) HLS Heuristic list scheduler (HLS) [9] finds all the rout-
ing possibilities between the source node and destination
node of a flow. For each of the possible routes, HLS
finds the time slot which leads to the minimum end-to-
end delay. The route which has the minimum end-to-end
delay among all the routing possibilities is chosen. If the
minimum delay exceeds the maximum end-to-end delay
delayy, the scheduler fails to schedule this flow.

2) LS List scheduler (LS) is almost the same as HLS. The
only difference is LS considers the shortest route which
containing the minimum number of edges instead of
examining all possible routes.

3) HLS+LD Heuristic list scheduler with LD time slot
assignment method (HLS+LD) is almost the same with
HLS but it uses the LD time slot assignment method
to select a time slot for each edge. HLS+LD chooses
the route with the minimum total LD score among all
the routing possibilities. If the end-to-end delay of the



chosen route exceeds the maximum end-to-end delay
delayy, then the next best route is chosen. If all routes
cannot meet the maximum end-to-end delay delayy, the
scheduler fails to schedule this flow.

4) LS+LD List scheduler with LD time slot assignment
method (LS+LD) is almost the same with HLS+LD. The
only difference is LS+LD considers the shortest route
instead of examining all possible routes.

5) ILP ILP-solver based scheduler (ILP) constructs the ob-
jective function according to system constraints related
to the period and end-to-end delay. An ILP solver is
used to find a feasible solution [7]

C. Incremental Scheduling Scenario

The purpose of this scenario is to verify whether DRLS can
schedule more flows than other baseline methods.

In this scenario, all 3 kinds of topologies are used. During
one test, the same randomly generated TT flows are fed to all
schedulers. If a scheduler fails to schedule a flow then it stops.
Finally, we get the maximum number of successfully sched-
uled flows and the maximum link usage of each scheduler.
Note that every scheduler runs at most 3600 seconds.

As shown in Figure 5(a), DRLS schedules more flows than
LS+LD (32.7% on average) and LS (183.9% on average) in
the simplified AFDX network topology. DRLS, LS+LD, and
LS finish running within 60 seconds while HLS and HLS+LD
schedule few flows in 3600 seconds. It can be seen that the
number of flows which scheduled by DRLS has a larger
variance than LS+LD and LS. This is because, on one hand,
LS+LD and LS are more stable than DRLS. On the other hand,
as shown in Figure 6(a), DRLS has a larger link usage as it
schedules more flows which means the network becomes more
crowded. A crowded network is more likely to encounter an
accident.

Figure 5(b) shows that HLS+LD schedules more flows than
DRLS in the ladder topology with 6 nodes. The result is
not surprising because HLS+LD considers all possible routes,
hence it gets almost the optimal solution. DRLS schedules
more flows (20% on average) than LS+LD in the ladder
topology with 6 nodes and schedules slightly more flows (0.5%
on average) than LS+LD in ladder topology with 8 and 10
nodes. When the size of ladder topology becomes larger (12
and 14 nodes) LS+LD schedules more (2.5% on average)
steams than DRLS. This is because the ladder topology is so
simple that the shortest route is the best route. As we can see
in Figure 6(b), DRLS has larger link usage than LS+LD in all
ladder topologies which shows that DRLS prefers to choose a
longer route. This policy can avoid bottleneck link in complex
network topology but seems do not work for ladder topology.

As shown in Figure 7, DRLS schedules more flows than
other schedulers (23.9% than LS+LD, 248.4% than LS on
average) in all random topologies. HLS+LD is almost as good
as DRLS but it can schedule few flows when the network
becomes large (has more than 8 nodes). The result in Figure 8
shows that DRLS, LS+LD, and LS schedule more flows when
the network topology becomes large while the link usages have

barely budged. This is because a bottleneck link is likely to
raise when the network becomes crowded.

D. Link Failure Scenario

The purpose of this scenario is to test whether DRLS and
other baseline methods can well handle topology change due
to link failure. The test consists of two parts.

1) In the first part, the same randomly generated TT flows
are fed into all schedulers. When the number of flows
reaches 1000, a random link failure is triggered. The
flows routing pass through the link are affected and need
to be re-scheduled. We test whether the scheduler can
perform the re-scheduling successfully.

2) Then randomly generated TT flows are fed to all
schedulers to get the maximum number of successfully
scheduled flows after the failure occurs (the same as
section VI-C).

DRLS, LS+LD, and LS can all recover from a link failure
and Figure 9(a) shows that DRLS can schedule more flows in
a changed network topology than LS+LD and LS. Compared
with the original simplified AFDX topology (Figure 5(a)),
DRLS schedules 5% (on average) fewer flows when a link
failure occurs.

E. Saturation Scheduling Scenario

The purpose of this test is to verify whether DRLS can
schedule more flows with a relatively high link usage. The
following steps are used to maintain the link usage at a high
level (i.e., 50% )

1) Randomly TT flows are generated and scheduled, which

increase the link usage;

2) When the link usage reaches 50%, 100 randomly se-

lected flows are deleted to lower the link usage;

3) Goto step 1.

The method mentioned in section VI-C is used to get the
maximum number of successfully scheduled flows for each
scheduler.

The result in Figure 9(b) shows that DRLS schedules far
more flows than LS+LD. Other schedulers are not taken into
account as they cannot reach a link usage of 50% (Figure 6(a)).
Compared with the result in Figure 5(a), DRLS schedules
204% (on average) more flows in this scenario than in the
original simplified AFDX topology.

F. Scheduling Time Comparison

In this test, we compare the running time of different
schedulers. During one test, a certain number of flows are
randomly generated. The time (in seconds) used to schedule
these flows in simplified AFDX topology of all schedulers are
compared in Table 1. Please note that the ILP scheduling is
only executed once and the running time of DRLS, LS+LD,
and LS is the average running time of 100 tests.

The result shows that DRLS runs faster than ILP while
LS+LD and LS are faster than DRLS. LS+LD and LS are

Usually, the link usage of all TT flows is below 30%.
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faster than DRLS because the former finds the shortest route
using a Breadth First Search and the latter uses a DNN to find
the route for a TT flow.

TABLE I
THE TOTAL RUN TIME (IN SECONDS) OF SCHEDULING A CERTAIN NUMBER
OF TT FLOWS
Number of Flows ‘ ILP DRLS LS+LD LS
300 790.674  8.162057  0.175024  0.124243
500 2288.662  13.60343  0.291707  0.207072
700 4095.956 19.0448 0.40839  0.289901
900 7176.896  24.48617  0.525073 0.37273

Table II shows the average time (in seconds) used to
schedule one flow. HLS+LD and HLS are much slower than
other schedulers. The average time of DRLS, LS, and LS+LD
is almost unchanged when the number of flows increases while
the average time of ILP is increasing which shows that DRLS,
LS, and LS+LD have better scalability than ILP. Since HLS
and HLS+LD cannot finish in 3 hours, the scheduling times
of 500 and 500+ flows of HLS+LD and HLS are left empty.

TABLE II
THE AVERAGE RUN TIME (IN SECONDS) OF SCHEDULING A CERTAIN
NUMBER OF TT FLOWS

Number HLS+LD HLS ILP DRLS LS+LD LS
of Flows

300 33590 29635 2.635 0.02671 0.00061  0.00040
500 - - 4577 0.02713  0.00065  0.00038
700 - - 5.851 0.02681 0.00056  0.00041
900 - - 7974 0.02823 0.00057  0.00043

VII. INTEGRATION WITH NETWORK SIMULATOR
OMNET++

In order to evaluate whether DRLS can be used in a real
TTEthernet and to configure switches to schedule TT flows,

we use the network simulator OMNeT++ simulator version
5.6.2 to verify the schedule calculated by DRLS.

A. Network Settings

We deploy the simplified AFDX network topology which
mentioned above. To simulate the bandwidth and frame size
mentioned in VI, the delay of each link is set to 250 mi-
croseconds. The TT flows transmitted in the network are 10
randomly generated flows and are showed in Table III.

TABLE III

TT FLOWS
No. | source destination period max delay frame length

node node

1|4 2 256 97 380
215 3 64 56 115
313 7 128 66 171
419 4 16 10 945
517 8 64 54 451
6|6 1 256 142 553
712 4 256 75 259
8|4 6 512 148 1086
917 2 32 12 152
10 | 2 7 128 113 850

B. Translate Scheduling Result to Schedule Table

The scheduling result of DRLS needs to translate to the
per-switch schedule table which tells each switch where and
when to deliver a frame. The schedule of a flow s; can be
illustrated as {(eg,t0), (€1,%1), -, (€n,t,)} which e; is the
edge decision and ¢; is the corresponding time slot. The frame
of a TT flow is initially located at the source node of e (src
according to Equation 2) and the destination node of e,, is
responsible to deliver it to the related upper application. When
the source node of e; receives the frame, the port to transport
it is the one which connected to the destination node of e¢;. As
the length of time slots is set to 250 microseconds, the sending
time of a frame at the source node of ¢; is t; x 250us.

switch4

switch8

switch5

Fig. 10. Simulation of the simplified AFDX network with 10 randomly
generated flows

C. Simulation Results and Analysis

The simulation results show that the schedule table calcu-
lated by DRLS can be translated to the configuration of a
switch and applied to a real world application. Meanwhile,



all flows arrived at their destination on time which shows
that DLRS is capable to schedule all TT flows without any
collision.

VIII. CONCLUSION

TTEthernet is essential for industrial control networks with
TT communication requirements. One of the most challenging
tasks in TTEthernet is the scheduling of TT flows. Most of the
existing methods have obvious defects and cannot meet the
scheduling requirements of TTEthernet, either perform static
scheduling or have poor scalability. A TT flow scheduler with
good scalability and dynamic scheduling ability is urgently
needed. We propose a DRL based TT flow scheduling method,
DRLS, which can dynamically schedule TT flows in a rela-
tively short time. The policy of DRLS agent is implemented
as a deep neural network, which can be understood as a
well-designed heuristic. When the network topology changes,
DRLS can recover in time and reschedule the affected TT
flows. Compared with the heuristic rule-based and ILP solver-
based scheduling methods, DRLS improves scheduling ability
by 23.9% and reduces the computation time to 30 milliseconds
per TT flow.
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