TTDeep: Time-Triggered Scheduling for Real-Time
Ethernet via Deep Reinforcement Learning

Hongyu Jia, Yu Jiang, Chunmeng Zhong, Hai Wan, Xibin Zhao
KLISS, BNRist, School of Software, Tsinghua University, China

Abstract—Schedule scheme is essential for real-time Ethernet.
Due to the inevitable change of network configurations, the solu-
tion requires to be incrementally scheduled in a timely manner.
Solver-based methods are time-consuming, while handcrafted
scheduling heuristics require domain knowledge and professional
expertise, and their application scenarios are usually limited.
Instead of designing heuristic strategy manually, we propose
TTDeep, a deep reinforcement learning schedule framework, to
incrementally schedule Time-Triggered (TT) flows and adapt to
various topologies. Our novel framework includes 3 key designs:
a period layer to capture the periodical transmission nature of TT
flows, the graph neural network to extract and represent topology
features, and a 3-step selection paradigm to alleviate the huge
action search space issue. Comprehensive experiments show that
TTDeep can schedule TT flows much faster than solver-based
methods and schedule nearly twice more TT flows on average
compared to handcrafted heuristics.

Index Terms—Deep Reinforcement Learning, Time-Triggered
Scheduling, Time-Sensitive Networking.

I. INTRODUCTION

The deterministic transmission of real-time data has a
strong demand in key fields such as automobiles, trains and
aerospace, etc. Ethernet based real-time networks have been
proposed to provide real-time data transmission capability with
high bandwidth. Time-sensitive networking (TSN [1]) and
TTEthernet [2] are enhancements of Ethernet to provide not
only traditional best-effort (BE) frame delivery but also time-
triggered (TT) frame delivery. TT frame is mainly designed
to enable the deterministic transmission of real-time data and
its periodic nature relies on two main ingredients: delicate
schedule table and precise time synchronization.

The precise arrival and forwarding time of each TT frame
are calculated in advance and saved in the so-called sched-
ule tables. Then all network devices (hosts and switches)
transmit TT frames periodically according to the table with
a synchronized global time. Each specific type of periodically
transmitted TT frame is defined as TT flow. Fig.1 shows one
TT flow transmits from host H; to host Hs. Flow scheduling
not only searches the valid route, but also allocates time for
each link of the route. We can see that TT flow transmitted
on e1,eq, e at times 3, 4, 7 respectively.

As the network becomes increasingly flexible, such as
node/link failure, new node and switch introduction, high-
level application requirement change, they will all result in
the variation of network configuration. Therefore, we need to
incrementally calculate the schedule table in time.

TT schedule is essentially an NP problem [3]. Proposed
solver-based scheduling methods [3]-[6] model the flow re-

Physical Link

—»
Dataflow Link

Fig. 1. An example of TT flow schedule with 2 switches and 5 hosts

quirements, device status, etc., as a set of linear constraints,
which ensures that no TT frames transmit through the same
link at the same time. Then various solvers are used to search
for a solution based on these constraints. However, solver-
based methods are time-consuming, thus they are inapplicable
in incrementally schedule scenarios. Several improvements [7],
[8] were proposed to accelerate the computation process, but
they are limited to specific application scenarios.

In contrast, heuristic-based methods can effectively reduce
the time of searching solutions. For example, heuristic list
scheduler [9] obtains a valid solution by two heuristics: one for
TT flow routing, and the other for forwarding time assignment.
However, well-designed heuristic strategy requires domain
knowledge and professional expertise.

Hence, how to obtain heuristics with good performance
becomes a problem worth exploring. In recent years, deep
reinforcement learning (DRL) has achieved state-of-the-art
performance in many fields. For example, Stampa [10] pro-
posed intelligent routing algorithm, which optimizes network
delay of the traditional network. Mao [11] uses policy gradient
algorithm to model workflow scheduling problem.

The above work has demonstrated the great potential of
using DRL to solve the NP-hard scheduling problems. The
essence of DRL is to train an intelligent agent which interacts
with the environment and continuously learns how to obtain
the highest reward. We carefully design a DRL-based TT
schedule framework to effectively capture system status and
naturally map actions to schedule solutions. Overall, this paper
has made the following contributions:

o We propose a DRL-based framework, TTDeep, to incre-
mentally schedule TT flows in a timely manner.

o Several optimization methods are devised to handle TT
domain specific modeling, global information extraction
and large search space problems.

phase 0 phase 1

macro cycle

phase 2 phase 3

(T (A [T

[T [T T[T

01 2 23 63 0 1 2

630 1 2

23 62630 1 2 63 slot

Fig. 2. Simplified slot allocation result. Three TT flows with periods of 1ms, 2ms and 4ms are scheduled.

o Comprehensive experiments show that TTDeep outper-
forms handcrafted scheduling heuristics. And it can well
adapt to different topologies and handle network changes.

The remaining parts is organized as follows: section II

defines TT scheduling problem formally. The design and im-
plementation details of TTDeep are introduced in sections III
and IV respectively. Section V conducts detailed experimental
evaluation. Finally, we conclude in section VI.

II. PROBLEM DEFINITION
A. Basic TT Notations

The network topology can be formally defined as an undi-
rected graph G(V, E). All devices and physical links in the
network are denoted by vertex set V' and edge set E respec-
tively. Each undirected edge is denoted by two bidirectional
dataflow links, and thus we can get the dataflow link set L:

(1)

The id, source, destination, frame length, maximum end-to-
end delay and period of i-th TT flow is denoted by f; =
{fiid, fi.src, fidst, fi.len, f;.dly, f;.prd}. All TT flows are
denoted as the set F. For a TT flow starting from v; and
ending at v,,, its route is denoted by the path RT =
[[vi,v2], -, [Um—1,Vm]]. Since all TT flows are transmitted
periodically, we need the concept of macro cycle, which refers
to the least common multiple (LCM) of all TT flow periods,
lemprqg = LOM (f1.prd, - -, fip|-prd).

(Ui,’l)j) €eF = [vi,vj] eL, [vj,vi] eL

B. Time Slot Assignment Problem

We divide continuous time into discrete slots, which are
the smallest time units. Following the time granularity of the
ILP-based method [7], a slot equals to éms = 15.625us. For
the link speed of 1Gbit/s, the transmission of one maximum
transmission unit (MTU) frame can be completed within one
slot. Moreover, the period of each TT flow is the power of 2
(e.g. Ims, 2ms, 4ms, etc.) [12]. Thus, f; needs to transmit
lemyra/ fi-prd frames in a macro cycle.

For each TT flow requirement, the TT scheduling algorithm
outputs a route from its source to its destination, and assigns
slots to the flow for all links along the route. Suppose three
TT flows (f1, f2, and f3 with periods 1lms, 2ms, and 4ms
respectively) are all routed passing through one specific link
k. Fig. 2 shows a possible schedule result on the link k.

To handle huge search space issue, we split slot assignment
process into two steps: phase selection and offset calculation.
A phase equals to 1ms. As shown in Fig. 2, the macro cycle is
divided into 4 phases, and each phase further contains 64 slots.
When assigning slots for the flow, we first select its phase and
then decide which slot in that phase should be assigned to

Reward (s, a;)

State TTDeep Agent
Action
Network Distribution
Topolo .
pology H /O Environment
@ @% Feature /O
H Extractor Graph Poli
el and || Newral || PO O a
@ ﬁ% Period || Network [} 1y b — ()
H Block | |(§1II-C) r(sear) =
(§111-B) ™~0 ax TTymisn
g Y +B X TTaetay
TT flow \O
fi = {src,dst,prd, -}

T

Update next state S;.41

Fig. 3. TTDeep framework, which contains three main ingredients: state,
TTDeep agent and environment.

the flow. For example, TT flow fs occupies the 63rd slot of
the 3rd phase. Then the slot assignment problem is deduced
to the problem of finding the first phase index in the macro
cycle and the offset within the phase. As shown in Fig. 2,
the (first_phase_index, offset) pairs of each flow is (0,2),
(0,23), and (2,62). Given the first_phase_index and offset
of flow f, we can calculate the first slot that f occupies:

first_slot(f) =first_phase_index(f) x 64 + offset(f) (2)

Furthermore, the set of slots assigned to f in a macro cycle is:
{first_slot(f)+ f.prdxili € {0,1,--- ,lemppq/f.prd—1}}.

III. DETAILED DESIGN OF TTDEEP
A. Overview

The architecture of TTDeep is illustrated in Fig. 3. During
the ¢-th step, TTDeep observes state s;, which contains topol-
ogy information and the requirement of current flow. Then
TTDeep encodes state into embedding vectors through graph
neural network (GNN). Finally, the TTDeep agent leverages
policy network to select action a;. After executing action
a;, the agent can obtain the feedback reward r(s;, a;) from
the environment. TTDeep expects to schedule as many flows
as possible while ensuring low transmission delay. When
the scheduling process reaches terminal conditions, we decay
rewards of the entire trajectory and update network parameters.

Fig. 4 shows TTDeep model architecture, which contains
three parts: feature extractor, GNN and policy network. Feature
extractor encodes the basic information of each link to a
corresponding feature vector. It expresses the characteristics
of a single link, while GNN propagates the information of
each link to its neighbors, so that TTDeep can learn richer
knowledge. Finally, to select a well-performed action, the
policy network scores each link and the corresponding slots.

e

r .
olicy

| P p(link) p(phase|link) Valid offset :
| Network ¢ 1 |
| ——
| softmax softmax | o
| » Offset Calculation | |
| MLP MLP L |
! t T Tttt :
! I
|

! Raw Feature I GCN Feature I GSN Feature Resource Feature | |
- [A N - N _ |
e et | st ——=—n -
: Graph Neural Fully Connected Layer : Period Block
| Network Mean-pooling | Resource Feature

| e e

|

,,,,, fi

| _FClayer(256) |

| Feature

: Extractor

Fig. 4. Network architecture of TTDeep, which can be divided into three
parts: feature extractor, graph neural network and policy network.

B. State Modeling: Basic Feature and Period Block

We present each link v as a feature vector e,, which
captures the information related to TT schedule. This feature
vector consists of two parts: raw feature vector 7, and avail-
able resource vector t,, where r, € RS is the basic feature
and contains the following elements: the source of flow or
not, the destination of flow or not, whether current link has
been visited, the proportion of legal phase, the used rate of
bandwidth, and the period of flow.

Without loss of generality, we assume the macro cycle n
is 1024ms in the following discussion. Note that one phase
contains 64 slots, so that this macro cycle has 65,536 slots.
To ensure no frame loss during the flow transmission, the
slots that previously occupied can not be scheduled once
more. So that we use t,, to represent available slots resource.
However, simply encoding all available slot status will result
in unacceptable memory consumption. Here, we take into
consideration the periodic nature of TT transmission and
propose period layer. Fig. 5 shows that each neuron of the
input layer z,, € R'92* represents a phase. The value of each
input neuron is the available slot rate of corresponding phase.

For the traditional fully connected (FC) layer, each out-
put neuron connects with all input neurons directly. How-
ever, we observe that flow f with period f.prd just occupy
lemyprq/ f.prd slots in a macro cycle, which means TT flow
with a higher period influences less phase status. Hence, we
design a specific connection pattern as illustrated in Fig. 5.
Fori € {0,1,--- ,k—1}, where k = loga(n), we group every
2% output neurons together, and connect them to 2¥~* input
neurons separately. So far we have Zf:_ol 2 = n — 1 output
neurons connected with the input layer. To keep the input and
output dimension consistent, we add a dummy neuron at the
end of the output layer. The number of parameters of period
layer is O(3F—) 2 x 25~ - n) = O(nlogn). Compared with

1024 dimension

Fig. 5. Period layer structure. Output neurons with the same color are grouped
together. For example, the green group has 4 neurons, each neuron connects
to 256 input neurons. The last grey neuron is a dummy neuron.

FC layer whose parameters is O(n?), period layer can save a
great number of parameters. We further design period block
(cf. Fig. 4) which encodes the input vector x, to available
resource vector t,,. Period block helps TTDeep learn adequate
feature knowledge in a relatively fast time and accelerate
model convergence.

C. Neighbor Knowledge gathering: Graph Neural Network

To adapt to various network topologies, we take advantage
of the graph convolutional network (GCN) to get embedding
vector of each link and use graph summarization network
(GSN) to extract the global information.

For any link v, GCN takes feature vector € as input and
performs per-link embedding. Link v absorbs information from
its neighbors and the output embedding vector is denoted by:

ek =g Z flek=Y ekt k=12, (3
u~g(v)

Where f and ¢ indicate activation functions (Relu, PRelu,
etc.), and £(v) denotes all neighbor links of v. Each link
collects all information of its k-order neighbors by iterating
such computation % times.

GSN calculates the average of all link embedding vectors
and then encodes it through the FC layer and activation
function f and g. W denotes all parameters of GSN, then
the process of GSN can be formulated by:

(o (Zl5)) o

count(v ~ V)

For any link v, we can obtain the final vector z,,, which is a
concatenation of raw feature vector, available resource vector,
per-link embedding vector and global vector:

2y = concat(ry ||ty ||€X|legiobat) (%)

D. Action modeling: 3-step Selection Paradigm

When TTDeep agent performs action selection, there are
at most hundreds of options for the selection of the next-hop
link in the route. Meanwhile, we have over 10* choices for
slot assignment of a TT flow. Such huge search space makes
it difficult for TTDeep to learn an effective strategy.

Hence, we devise a 3-step action paradigm and split the
action into three parts a; = (link, phase, offset). link denotes
the routing option, i.e., which link the TT flow should go
through to reach the next node. The second part denotes the

forwarding phase index. offset denotes the slot offset within
phase. Then policy network sequentially calculates these three
parts as illustrated in the Fig. 4.

Link Selection Sub-action. The input of the policy network
can be denoted as a matrix M = (2], 27 ,--- ,2X] e R™*",
where m is the number of links and z; € R” is the input
vector of the ¢-th link. Then the policy network exploits
multiple layer perceptron (MLP) to score each link and ob-
tains scr = [s1, S92, , Sy,|. Finally, it turns ser into the

probability distribution of the link through softmax function:

R . GO
LY exp(s))

The link selection will be sampled according to this probability
distribution, and the link with a higher score has a greater
probability of being selected as the next hop of the route.
Phase Selection Sub-action. After selecting the next link
k € [1,m], we utilize the input vector 2z and build another
MLP to score all phases of link k. Similar to the link
selection stage, we also use softmax function to regularize
the probability distribution and select the forwarding phase h.
Offset Calculation Sub-action. Leveraging MLP to select
the offset within the phase will unnecessarily increase the
difficulty of training model. Therefore, we traverse from slot O
to the latest slot 63 of phase h, and directly assign the earliest
valid offset to the phase h.

(6)

E. Model Updating: policy gradient algorithm

As flow requirements continuously arrive and they are in-
crementally scheduled, TTDeep will reach terminal condition
when it fails to schedule current flow (find wrong route or
cannot allocate valid slot). Then we use the policy gradient
algorithm [13] to update TTDeep model.

The policy gradient algorithm updates model by calcu-
lating the gradient of the expected reward value relative
to the parameter. The state and action sequences in the
scheduling process can be considered as a trajectory 7 =
(80,00, " ,Sn—1,0dn—1, Sp)- Assuming 6 indicates all param-
eters of TTDeep, a and «y denote the learning rate and decay
factor respectively, the goal of TTDeep agent is to find an
optimal strategy 7 : s X a — [0,1], so as to maximize the
reward value expectation R, = E,[3 7~ v'r(s, a;)]. we can
derive the gradient and the corresponding update formula:

VoR(m9) = Esmp. .amm [Volog(mg(als))(r(s,a) —b)] (7)
0 =060+ aVyR(my))

Where b is estimated based on the mean value of all rewards
under the same trajectory, thus reducing the variance in the
model training process without introducing bias.

To calculate 7y (als), as we calculate offset directly without
using neural network, the probability of the action triplet is
P(a = [link,phase, offset]|s) = p(link) x p(phasel|link).
When t-th step action a; reaches the destination of current
flow, then TTDeep will obtain next flow requirement until it
reaches terminal condition. Otherwise, it indicates that a; are

Algorithm 1 TTDeep Training Procedure
Input: network topology N7, TT flow requirement set F'

1: Initialize TTDeep parameter 6, dual replay buffer R
2: for episode = 1,--- M do
3: Reset NT, F' and get initial state sq

4 fort=0,---,T do

5: Sample link link according to p(link|s;)

6: Sample phase phase based on p(phasel|s;, link)

7 Calculate the earliest valid slot offset

8 Take action a; = [link, phase, offset], get reward
rt = r(s¢,a) and transit to the next state s;;

0: Store transition (s¢, as,r¢) in R

10: Get new TT flow from F' if a; reaches destination.

11: end for

122 fort=20,---,7T do

13: Decay and update reward r; = ijt vy,
14: end for

15: fori=1,--- N do

16: Sample transitions (s;, a;,7;) from replay buffer R
17: Exploit Eq. 7 and Eq. 8 to update parameter ¢

18: end for

19: end for

moving forward to its destination and TTDeep will update slot
occupancy situation and transit to the next state sy .

We can convert the action triplet (link, phase, offset) into
schedule solution directly. link indicates the next-hop, and
the forwarding time of each flow follows Eq. 2. After action
reaches the flow destination, we can obtain the whole route of
current flow, and slots of each link along the route.

IV. IMPLEMENTATION DETAILS

Alg. 1 shows the pseudo-code of the action selection and
TTDeep training process. At each timestep ¢, TTDeep encodes
state s; through feature extractor and GNN first, then it
calculates the probability distribution and serially selects sub-
actions. When the current trajectory reaches the terminal con-
dition, TTDeep will decay the reward and save each transition
(st,at,m¢) in the replay buffer.

The transitions of the flow f; are considered to be failed if
TTDeep reaches terminal condition. By contrast, all transitions
of f; will be stored in the success replay buffer if TTDeep
finds a valid solution. To cope with the unbalance between
the success and failure transitions, we exploit double replay
buffer [14] to sample these two type of transitions individually.

TTDeep aims to meet as many TT flow requirements as
possible while keeps relatively low transmission delay, thus
we set reward function as Eq. 9 and Eq. 10.

T(St; at) =a X TTfinish + 6 X TTdelay (9)
1, action reaches destination
TTfinish = {0, scheduling is in progress (10)

—1, schedule failed

,’;1400 —e— SPF_delay HLS_short A~ B SPF_delay
k=) 1200 SPF_early —®#~ TTDeep SPF_carly
z HLS delay -~ ILP » 2500
21000 s z
g = 2000
2 800 o
2 E
B B00 g a Ty e 3 1500
S 5 .
£ 400 £1000 g J
E] =
3 E
£ 200 2 500
@ = . L 3 2 L 2 A =
100 200 300 400 500 600 700 800 900 1000 0 8 10 12

The number of scheduled TT flow

(@) (b)
1200 .
- —e— SPF_delay HLS_short * BN SPF_delay
E 1000 SPF_early — =~ TTDeep 7 SPF_carly
z HLS_delay o ILP v
2 800 = s g
= _ 2 8000
2 e =
g 60 PECE 6000
2 G s
2 400 2 4000
= E
el E]
2 200 5 2000
B =
» —3——9 2 2 . s s L & = I I I
100 200 300 400 500 600 700 800 900 1000 077 10 13

The number of scheduled TT flow

(d) ()

14 16 18 20 0

The number of switches

£ 4000
I I I 2000
6 19 22 25 0

The number of switches

HLS_delay
HLS_short

I TTDeep EE SPF_delay

SPF_early

I|I(|IF|I(|V'V'V|
8 10 12 14 16 18 20

The number of switches

EEE HLS_delay
HLS_short

B TTDeep

2500

S

2000

1500

The number of TT flow.
o o
o o
38 &

(c)

HLS_delay
HLS_short

I TTDeep Il SPF_delay I

SPF_early

7 10 13 16 19 22 25

The number of switches

| HLS_delay
HLS_short

B TTDeep

» 8000

WS

6000

The number of TT flow

®

Fig. 6. The first and second rows depict the experiment results of ladder topology and RRG topology respectively. (a)(d) Schedule running time per flow of
various approaches. (b)(e) Comparison of the number of scheduled TT flows. (c)(f) Comparison of link failure adaptation capability.

TT4etay indicates transmission delay of the current flow,
usually we set the hyperparameters « = 1, S =1 x 1077,

The hyperparameter settings of the TTDeep model are as
follows. The number of iterations in GCN is 2. The length of
GCN and GSN embedding vectors are both 32. In the policy
network, the MLP that scores link contains four FC layers
with dimensions 128, 64, 16, 1. The MLP of phase includes
two FC layers with dimensions 512 and 1024. In addition, the
activation function of all layers uniformly uses Leaky_Relu.
Adam optimizer with learning rate 1 x 10~# is adopted when
updating the parameters. The reward decay factor is set to 0.99
and we train TTDeep at least 1000 episodes.

V. EVALUATIONS
A. Experiment Setup

TTDeep training stage is deployed on a server with Nvidia
Tesla T4 GPU. Note that all experiments of TTDeep evaluation
stage and baseline algorithms are evaluated on a workstation
with an Intel Core i7-10710U CPU and 16GB RAM.

1) Network Topology We select two real application topolo-
gies and one randomly generated topology.

Ladder topology is deployed in train communication net-
works and its switch number varies from 8 to 20.

Orion Crew Exploration Vehicle (CEV) topology [15] is a
fixed topology with 13 switches, 31 hosts and 53 links.
Random Regular Graph (RRG) is randomly generated
by the python library NetworkX and each switch randomly
connected to five other devices.

We trained TTDeep agents for each type of topology. In
each scenario, the corresponding agent is used for evaluation.
All flow requirements are generated randomly. The source and
destination of each flow are randomly selected. In addition,

we randomly select frame length between 64 bytes to 1518
bytes. The period of TT flows is uniformly selected from
{2ms, 4ms, 8ms, 16ms, 32ms, 64ms} and their delays
are restricted randomly from 512ms to 1024ms.

2) Baseline Scheduling Methods
SPF_delay Shortest path first delay (SPF_delay) [16] calcu-
lates the shortest route first. When assigning time slots to each
link, SPF_delay considers a time slot assignment scheme that
minimizes the transmission delay of the entire route.
SPF_early SPF_early searches the same routes as SPF_delay.
However, SPF_early allocates the earliest valid slot directly.
HLS_delay Heuristic list scheduler delay (HLS_delay) [9]
considers all routes from source to the destination. Then
HLS_delay selects the valid slot which leads to the minimal
transmission delay. Finally, we select the minimal-delay route.
HLS_short The basic idea of HLS_short is similar to the
HLS_delay. But HLS_short considers the route with the short-
est hops when it searching the final decision.
ILP The integer linear programming (ILP) method [8] is a
solver-based method, which constructs constraints on the fixed
route and enumerate all forwarding time of flows.

B. Scheduling Time Comparison

For ladder topology and RRG topology with 16 switches,
we schedule 100 flows at first and then iteratively add 100
flows as step size until the number of flows reach 1000.
Fig. 6(a) and Fig. 6(d) show the average time of scheduling
one flow on ladder topology and RRG topology respectively.
SPF_delay and SPF_early consume the shortest time because
they only consider the shortest route. But SPF_early fails when
it schedules more than 800 TT flows on the ladder topology.
The running time of TTDeep costs 36.846ms on average.

TABLE I
THE NUMBER OF SCHEDULED TT FLOWS ON ORION CEV TOPOLOGY

Scenario SPF_delay SPF_early HLS_delay HLS_short TTDeep
Incremental 1566 1403 1483 1789 4051
Link Failure 1566 1393 1444 1673 3545

Since HLS_delay and HLS_short have to consider all possible
routes, they take longer time to complete the scheduling
process. In addition, the ILP method needs to enumerate all
slot assignment schemes, which leads to the longest running
time and its scheduling time increases exponentially when the
number of TT flows increases. Overall, the scheduling time of
TTDeep is less than 100ms, which is applicable [17].

C. Incremental Scheduling Capability Comparison

To evaluate incremental schedule ability, we continuously
generate random flow requirements and feed them to each
algorithm one by one. We get the maximum number of
scheduled flows when one method fails to find legal route
or allocates invalid slot. Since ILP’s running time is usually
unacceptable when facing huge flow requirements, we ignore
ILP method in the following experiments.

Fig. 6(b) and Fig. 6(e) show that SPF_delay and SPF_early
have the least number of scheduled flows because they
only consider one single route. In contrast, HLS_delay and
HLS_short improved their performance by selecting routes
from a global view. TTDeep schedules the highest number
of TT flows since it can not only select routes intelligently,
but also consider the slot distribution of each link. Note that
TTDeep only uses the the dataset of 16 switches in the training
stage. However, it can still achieve fantastic performance
when scheduling various topologies with different numbers of
switches, which reflects the generality of the TTDeep model.

As for the Orion CEV topology, since the number of devices
and links is fixed, we conducted multiple experiments with
different flow requirements, table I shows the performance of
TTDeep has increased by 126.4% on average compared to the
other algorithms. Faced with the Orion CEV topology, other
algorithms are prone to encounter bottleneck link problem:
many previously scheduled flows pass through certain key
links and result in the congestion of these links. In contrast,
we have observed that TTDeep can selectively bypass some
bottleneck links by sacrificing transmission delay and obtain
trade-off with higher number of scheduled TT flows.

D. Link Failure Adaptation Capability Comparison

Link failure is the main reason for network topology
changes, which affect TT transmission seriously. We randomly
delete a link when the algorithm completes the scheduling
of 500 flows. Then all flows passed through the failure link
need to be rescheduled. We test whether each method can
recover from the link failure first, and then it will continue
to schedule new flow requirements until it reaches terminal
condition. Fig. 6(c), Fig. 6(f) and table I show that all five
methods can recover from link failures and TTDeep still has
the best performance and good generality.

VI. CONCLUSION

This paper proposes an incremental schedule model
TTDeep, which provides the scheduling scheme for critical
frames in real-time Ethernet. We devise a 3-step action se-
lection paradigm to cope with the issue of huge action space
and propose the period layer to capture the temporal features
efficiently. Comprehensive experiments show that TTDeep can
schedule more TT flows than handcrafted heuristics methods
and it can well adapt to topology change scenarios.

REFERENCES

[1] IEEE, “Ieee standard for local and metropolitan area networks—bridges
and bridged networks—amendment 25: enhancements for scheduled
traffic: 802.1 qbv-2015,” 2016.

[2] W. Steiner, G. Bauer, B. Hall, M. Paulitsch, and R. Obermaisser,
“Ttethernet: Time-triggered ethernet,” in Time-Triggered Communica-
tion. CRC Press, 2011.

[3] W. Steiner, “An evaluation of smt-based schedule synthesis for time-
triggered multi-hop networks,” in 2010 31st IEEE Real-Time Systems
Symposium. 1EEE, 2010, pp. 375-384.

[4] S. S. Craciunas, R. S. Oliver, M. Chmelik, and W. Steiner, “Scheduling
real-time communication in ieee 802.1 gbv time sensitive networks,”
in Proceedings of the 24th International Conference on Real-Time
Networks and Systems, 2016, pp. 183-192.

[5] R. S. Oliver, S. S. Craciunas, and W. Steiner, “leee 802.1 gbv gate

control list synthesis using array theory encoding,” in 2018 IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS).

IEEE, 2018, pp. 13-24.

Z. Hanzalek, P. Burget, and P. Sucha, “Profinet io irt message scheduling

with temporal constraints,” IEEE Transactions on Industrial Informatics,

vol. 6, no. 3, pp. 369-380, 2010.

[71 N. G. Nayak, F. Diirr, and K. Rothermel, “Incremental flow scheduling
and routing in time-sensitive software-defined networks,” IEEE Trans-
actions on Industrial Informatics, vol. 14, no. 5, pp. 2066-2075, 2017.

[8] N. Wang, Q. Yu, H. Wan, X. Song, and X. Zhao, “Adaptive scheduling
for multicluster time-triggered train communication networks,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1120-1130,
2018.

[9] M. Pahlevan, N. Tabassam, and R. Obermaisser, “Heuristic list scheduler

for time triggered traffic in time sensitive networks,” ACM Sigbed

Review, vol. 16, no. 1, pp. 15-20, 2019.

G. Stampa, M. Arias, D. Sdanchez-Charles, V. Muntés-Mulero,

and A. Cabellos, “A deep-reinforcement learning approach for

software-defined networking routing optimization,” arXiv preprint

arXiv:1709.07080, 20117.

H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-

izadeh, “Learning scheduling algorithms for data processing clusters,”

in Proceedings of the ACM Special Interest Group on Data Communi-

cation, 2019, pp. 270-288.

Q. Yu and M. Gu, “Adaptive group routing and scheduling in multicast

time-sensitive networks,” IEEE Access, vol. 8, pp. 37 855-37 865, 2020.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-

ent methods for reinforcement learning with function approximation,”

Advances in neural information processing systems, vol. 12, pp. 1057—

1063, 1999.

K. Narasimhan, T. Kulkarni, and R. Barzilay, “Language understanding

for text-based games using deep reinforcement learning,” arXiv preprint

arXiv:1506.08941, 2015.

Z. Pang, X. Huang, Z. Li, S. Zhang, Y. Xu, H. Wan, and X. Zhao, “Flow

scheduling for conflict-free network updates in time-sensitive software-

defined networks,” IEEE Transactions on Industrial Informatics, 2020.

Wikipedia contributors, “Open shortest path first — Wikipedia, the

free encyclopedia,” https://en.wikipedia.org/w/index.php?title=Open_

Shortest_Path_First&oldid=992275185, 2020, [Online; accessed 15-

December-2020].

Z. Li, H. Wan, Y. Deng, X. Zhao, Y. Gao, X. Song, and M. Gu,

“Time-triggered switch-memory-switch architecture for time-sensitive

networking switches,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 39, no. 1, pp. 185-198, 2018.

[6

=

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

